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Abstract

Many multivariate data analysis techniques for an m× n matrix Y are related to the model
Y = M + E, where Y is an m × n matrix of full rank and M is an unobserved mean matrix
of rank K < (m ∧ n). Typically the rank of M is estimated in a heuristic way and then the
least-squares estimate of M is obtained via the singular value decomposition of Y, yielding an
estimate that can have a very high variance. In this paper we suggest a model-based alternative
to the above approach by providing prior distributions and posterior estimation for the rank of
M and the components of its singular value decomposition.

Some key words: Carlson’s hypergeometric function, directional data, factor analysis, interac-
tion, model selection, relational data, social network, Steifel manifold.

1 Introduction

Every m× n matrix M has a representation of the form M = UDV′ where, in the case m ≥ n,

• U is an m× n matrix with orthonormal columns;

• V is an n× n matrix with orthonormal columns;

• D is an n × n diagonal matrix, with diagonal elements {d1, . . . , dn} typically taken to be a

decreasing sequence of non-negative numbers.
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The triple {U,D,V} is called the singular value decomposition of M. The squared elements

of the diagonal of D are the eigenvalues of M′M and the columns of V are the corresponding

eigenvectors. The matrix U can be obtained from the first n eigenvectors of MM′. The number of

non-zero elements of D is the rank of M.

Many data analysis procedures for matrix-valued data Y are related to the singular value

decomposition, partly due to its appealing interpretation as a multiplicative model based on row

and column factors. Given a model of the form Y = M + E, the elements of Y can be written

yi,j = u′iDvj + ei,j , where ui and vj are the ith and jth rows of U and V respectively. Models

of this type play a role in the analysis of relational data (Harshman et al., 1982), biplots (Gabriel

1971, Gower and Hand 1996) and in reduced-rank interaction models for factorial designs (Gabriel

1978, 1998). The model is also closely related to factor analysis, where the row vectors of Y are

modeled as i.i.d. samples from the model yi = uiDV′ + ei. In this situation, the goal is typically

to represent the covariance across the n columns by their relationship to K < n unobserved latent

factors.

The singular value decomposition also plays a role in parameter estimation for the above model:

Assuming the rank of the mean matrix M is K < n and letting (Û, D̂, V̂) be the singular value

decomposition of the data matrix Y, the least-squares estimate of M (and maximum likelihood

estimate under Gaussian noise) is given by M̂K = Û[,1:K]D̂[1:K,1:K]V̂
′
[,1:K], where Û[,1:K] denotes

the first K columns of Û and D̂[1:K,1:K] denotes the first K rows and columns of D̂ (Householder

and Young 1938, Gabriel 1978). In applications such as signal processing, image analysis, and more

recently large-scale gene expression data, representing a noisy data matrix Y by M̂K with K << n

has the effect of capturing the main patterns of Y while eliminating much of the noise.

Despite its utility and simplicity, two issues limit the use of the singular value decomposition as

an estimation procedure. The first is that the rank K of the approximating mean matrix M̂K must

be specified. Standard practice is to plot the singular values of Y in decreasing order and then

select K to be the index where the last “large gap” occurs. The second issue is that, even if the

rank is chosen correctly, the least-squares estimate has a very high variance: The value of ||M̂K ||2 is

equal to the sum of the first K eigenvalues of Y′Y, which has expectation E(Y′Y) = M′M+mσ2I

(where σ2 is the variance of the elements of E). As a result, the entries of M̂K can be much larger

in magnitude than the corresponding entries in M.

Philosophical debates aside, Bayesian methods often provide sensible procedures for model se-

lection and high-dimensional parameter estimation. For the model described above, a Bayesian

procedure would provide a mapping from a prior distribution p(U,D,V, σ2) to a posterior dis-

tribution p(U,D,V, σ2|Y). Of primary interest might be functions of this posterior distribution,

such as E(M|Y) or the marginal posterior distribution of the rank p(K|Y) ∝ p(K)p(Y|K). Both

of these quantities require integration over the complicated, high-dimensional space of {U,D,V}
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for each value of K. In the related factor analysis model where the elements of U are modeled

as independent normal random variables, the difficulty in calculating marginal probabilities has

led to the development of approximate Bayesian procedures: Rajan and Rayner (1997) provide

a coarse approximation to the marginal probability p(Y|K) by plugging in maximum-likelihood

estimates. Minka (2000) improves on this by providing a Laplace approximation to the desired

marginal probability. Both of these procedures rely on asymptotic approximations, and do not pro-

vide Bayesian estimates of M once the dimension has been selected. In contrast, Lopes and West

(2004) provide a unified procedure that provides both model selection and parameter estimation

for the factor analysis model, although their approach to model selection requires a complicated

two-stage reversible-jump MCMC algorithm: The first stage runs separate MCMC algorithms for

each rank K to be considered, and the second stage runs a Markov chain between ranks, using

results of the first stage to approximate marginal probabilities.

In many situations the row heterogeneity and column heterogeneity of Y are of equal interest.

In these cases, the factor analysis approaches mentioned above may be less appropriate than a

model for the singular value decomposition of M. The goal of this paper is to provide a method

of estimation and inference for such a model. Specifically, this paper provides the necessary calcu-

lations for Bayesian estimation and model averaging for a mean matrix M by way of its singular

value decomposition {U,D,V}. In Section 2 we discuss prior distributions for {U,D,V} given a

fixed rank K, and show how the uniform distribution for U (the invariant measure on the Steifel

manifold) may be specified in terms of the full conditional distributions of its column vectors. Sec-

tion 3 presents a Gibbs sampling scheme for parameter estimation when the rank of M is specified.

In the case of unspecified rank, estimation can be achieved via a prior distribution which allows

the diagonal elements of D to each be zero with non-zero probability. A Markov chain Monte

Carlo algorithm which moves between models with different ranks is constructed via a Gibbs sam-

pling scheme which samples each singular value dj from its conditional distribution. This is done

marginally over U[,j] and V[,j], and requires a complicated but manageable integration. Section 5

presents a small simulation study that examines the sampling properties of the Bayesian procedure.

It is shown that the procedure is able to estimate the true rank of M reasonably well for a variety

of matrix sizes, and the squared error of the Bayes estimate E(M|Y) is typically much lower than

that of the least squares estimator. Model extensions for non-normal data are described in Section

6, along with an example analysis of binary relational data. A discussion follows in Section 7.

2 The SVD model and prior distributions

As described above, our model for an m×n data matrix is Y = M+E, where M is a rank K matrix

and E is a matrix of i.i.d. mean-zero normally-distributed noise. We induce a prior distribution on
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the matrix M by way of a prior distribution on the components of its singular value decomposition

{U,D,V}.
For a given rank K, we can take U to be an m×K orthonormal matrix. The set of such matrices

is called the Steifel manifold and is denoted VK,m. A natural, non-informative prior distribution

for U is the uniform distribution on VK,m, which is the unique probability measure on VK,m that is

invariant under left and right orthogonal transformations. As discussed in Chikuse (2003, Section

2.5), a sample U from the uniform distribution on the Steifel manifold VK,m may be obtained

by first sampling an m×K matrix X of independent standard normal random variables and then

setting U = X(X′X)−1/2. Although this construction is straightforward, it doesn’t explicitly specify

conditional distributions of the form p(U[,j]|U[,−j]), which are quantities that will be required for

the estimation procedure outlined in Section 3. We now derive these conditional distributions via

a new iterative method of generating samples from the uniform distribution on VK,m.

Let U[,A] denote the columns of U corresponding to a subset of column labels A ⊂ {1, . . . ,K},
and let NA be any m × (m − |A|) matrix whose columns form an orthonormal basis for the null

space of U[,A]. A random U ∈ VK,m can be constructed as follows:

1. Sample u1 uniformly from the m-sphere and set U[,1] = u1;

2. Sample u2 uniformly from the (m− 1)-sphere and set U[,2] = N{1}u2;

...

K. Sample uK uniformly from the (m−K + 1)-sphere and set U[,K] = N{1,...,K−1}uK .

By construction this procedure generates an m ×K matrix U having orthonormal columns. The

following result also holds:

Proposition 1 The probability distribution of U is the uniform probability measure on VK,m.

A proof is provided in the Appendix. Since this probability distribution is invariant under left and

right orthogonal transformations of U (see, for example, Chikuse 2003), it follows that the rows

and columns of U are exchangeable. As a result, the conditional distribution of U[,j] given any

subset A of columns of U is equal to the distribution of NAuj , where uj is uniformly distributed

on the (m− |A|)-sphere. This fact facilitates the Gibbs sampling of the columns of U and V from

their full conditional distributions, as described in Section 3.

For a given rank K, the non-zero singular values {d1, . . . , dK} which make up the diagonal

of D determine the magnitude of the mean matrix, in that ||M||2 =
∑K

k=1 d
2
k. We model these

non-zero values as being samples from a normal population with mean µ and precision (inverse-

variance) ψ. Conjugate prior distributions for these parameters include a normal distribution with

mean µ0 and variance v2
0 for µ, and a gamma(η0/2, η0τ

2
0 /2) distribution for ψ, parameterized so
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Figure 1: A graphical representation of the model

that ψ has expectation 1/τ2
0 . This parameterization of the singular values differs slightly from

that of the usual singular value decomposition, in that the values {d1, . . . , dK} are not restricted

to be non-negative here. A model enforcing this restriction is possible, but adds a small amount

of computational difficulty without any modeling benefit (if A is a diagonal matrix of ±1’s, then

p(Y|U,D,V) = p(Y|UA,AD,V)). Finally, the elements of E are modeled as i.i.d. normal random

variables with mean zero and variance 1/φ. The prior distribution for the precision φ is taken to be

gamma(ν0/2, ν0σ
2
0/2). A graphical representation of the model and parameters is given in Figure

1. Choices for hyperparameters {(µ0, v
2
0), (η0, τ

2
0 ), (ν0, σ

2
0)} are discussed in Section 5.

3 Gibbs sampling for the fixed-rank model

A Markov chain with p(U,D,V, φ, µ, ψ|Y,K) as its stationary distribution can be constructed via

a Gibbs sampling procedure, which iteratively samples φ, µ, ψ and the columns of U, D and V from

their full conditional distributions. These samples can be used to approximate the joint posterior

distribution and estimate posterior quantities of interest (see, for example, Tierney 1994).

The full conditional distributions for φ, µ, ψ and the elements of D are standard and are provided

below without derivation. Less standard are the full conditional distributions of the columns of

U and V. To derive these, consider the form of p(Y|U,D,V, φ) as a function of U[,j],V[,j] and

dj ≡ D[j,j]. Letting E−j = Y−U[,−j]D[−j,−j]V
′
[,−j], we have

||Y−UDV′||2 = ||E−j − djU[,j]V
′
[,j]||

2

= ||E−j ||2 − 2djU′
[,j]E−jV[,j] + ||djU[,j]V

′
[,j]||

2

= ||E−j ||2 − 2djU′
[,j]E−jV[,j] + d2

j .

It follows that p(Y|U,D,V, φ) can be written

p(Y|U,D,V, φ) =
(
φ

2π

)mn/2
exp{−1

2
φ||E−j ||2 + φdjU′

[,j]E−jV[,j] −
1
2
φd2

j}. (1)
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Recall that conditional on U[,−j], U[,j]
d= Nu

{−j}uj , where Nu
{−j} is a basis for the null space of

columns of U[,−j] and uj is uniform on the m − (K − 1)-sphere. From (1), we see that the full

conditional distribution of uj is proportional to exp{u′jµ}, where µ = φdjNu′
{−j}E−jV[,j]. This is

a von Mises-Fisher distribution on the m − (K − 1)-sphere with parameter µ. A sample of U[,j]

from its full conditional distribution can therefore be generated by sampling uj from the von Mises-

Fisher distribution and then setting U[,j] = Nu
{−j}uj . The full conditional distribution of V[,j] is

derived similarly. In general, the von Mises-Fisher distribution on the p-sphere with parameter

µ ∈ Rp has density cp(||µ||) exp{u′µ} and is denoted vMF(µ), and the uniform distribution on the

sphere is denoted vMF(0). The normalizing constants for these two cases are

cp(κ) = (2π)−p/2
κp/2−1

Ip/2−1(κ)
for κ > 0, cp(0) =

Γ(p/2)
2πp/2

for κ = 0,

where Iν(x) is the modified Bessel function of the first kind. R-code for sampling from this distri-

bution is provided at my website.

Summarizing these results, a Markov chain with the desired stationary distribution can be

constructed by iterating the following procedure:

• For j ∈ {1, . . . ,K},

– sample (U[,j]|Y,U[,−j],D,V, φ) d= Nu
{−j}uj , where uj ∼ vMF(φdjNu′

−jE−jV[,j]);

– sample (V[,j]|Y,U,D,V[,−j], φ) d= Nv
{−j}vj , where vj ∼ vMF(φdjU′

[,j]E−jNv
{−j});

– sample (dj |Y,U,D[−j,−j],V, φ, µ, ψ) ∼ normal [(U′
[,j]E−jV[,j]φ+µψ)/(φ+ψ), 1/(φ+ψ)];

• sample (φ|Y,U,D,V) ∼ gamma[(ν0 +mn)/2, (ν0σ
2
0 + ||Y−UDV′||2)/2];

• sample (µ|D, ψ) ∼ normal[(ψ
∑
dj + µ0/v

2
0)/(ψK + 1/v2

0), 1/(ψK + 1/v2
0)]

• sample (ψ|D, µ) ∼ gamma[(η0 +K)/2, (η0τ
2
0 +

∑
(dj − µ)2)/2];

4 The variable-rank model

4.1 Prior distributions

In this section we extend the model of Section 2 to the case where the rank K is to be estimated.

This requires comparisons between models with parameter spaces of different dimension. Two

standard ways of viewing such problems are as follows:

• Conceptualize a different parameter space for each value of K, i.e., conditional on K, the

mean matrix is UDV′ where the dimensions of U,D and V are m×K, K ×K and n×K

respectively.
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• Parameterize U,D and V to be of dimensions m×n, n×n and n×n, but allow for columns

of these matrices to be identically zero. In this parameterization, K =
∑n

j=1 1(dj 6= 0).

Each of these two approaches has its own notational and conceptual hurdles, and which one to

present is to some extent a matter of style (see Green 2003 for a discussion). Given a prior

distribution on K, the first approach can be formulated by using the prior distributions of Section

2 as the conditional distributions of U,D and V given K. The second approach can be made

equivalent to the first as follows:

1. Let Ũ, D̃, Ṽ have the prior distributions described in Section 2 with K̃ = n;

2. Let {s1, . . . , sn} ∼ p(K =
∑
sj)×

(
nP
sj

)−1, where each sj ∈ {0, 1};

3. Let S = diag{s1, . . . , sn}. Set U = ŨS,D = D̃S,V = ṼS, K =
∑
sj .

Parameterizing a set of nested models with binary variables has been a useful technique in a variety

of contexts, including variable selection in regression models (Mitchell and Beauchamp 1988). We

continue with this formulation because it allows for the construction of a relatively straightforward

Gibbs sampling scheme to generate samples from the posterior distribution.

The matrices U,D and V described in 1, 2 and 3 above are exchangeable under simultaneous

permutation of their columns. It follows from Proposition 1 that, conditional on s1, . . . , sn, the

non-zero columns of U and V are random samples from the uniform distributions on VP
sj ,m and

VP
sj ,n respectively, and that conditional on {sj = 1,U[,−j],V[,−j]},

U[,j]
d= Nu

{−j}u, V[,j]
d= Nv

{−j}v, where

• Nu
{−j} and Nv

{−j} are orthonormal bases for the null spaces of U[,−j] and V[,−j];

• u and v are uniformly distributed on the (m−
∑
sj + 1)- and (n−

∑
sj + 1)-spheres.

This property will facilitate posterior sampling of the columns of U, D and V, as described in the

next subsection.

4.2 Posterior estimation

Let Θ = {U,D,V}, Θj = {U[,j], dj ,V[,j]} and Θ−j = {Θk : k 6= j} . In this subsection we derive

the full conditional distribution of Θj given {Y,Θ−j , φ, µ, ψ} under the model described in the

previous subsection. The prior and full conditional distributions of φ, µ and ψ remain unchanged

from Section 2. The full conditional distributions can be used in a Gibbs sampling scheme to

generate approximate samples from p(U,D,V, φ, λ|Y).

Under the model and parameterization described above, the components of Θj are either all

zero or have a distribution as described in Section 2. To sample Θj , we first sample whether or
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not the components are zero, and if not, sample the non-zero values. More specifically, sampling

Θj from its full conditional distribution can be achieved as follows:

1. Sample from ({dj = 0}, {dj 6= 0}) conditional on Y,Θ−j , φ, µ, ψ .

2. If {dj = 0} is true, then set dj ,U[,j] and V[,j] all equal to zero.

3. If {dj 6= 0} is true,

(a) sample dj |Y,Θ−j , φ, µ, ψ, {dj 6= 0};

(b) sample {U[,j],V[,j]}|Y,Θ−j , φ, dj .

The steps 1, 2, and 3 above constitute a draw from p(Θj |Y,Θ−j , φ, µ, ψ). The first step requires

calculation of the odds:

odds(dj 6= 0|Y,Θ−j , φ, µ, ψ) =
p(dj 6= 0|Θ−j)
p(dj = 0|Θ−j)

× p(Y|Θ−j , dj 6= 0, φ, µ, ψ)
p(Y|Θ−j , dj = 0, φ, µ, ψ)

(2)

The first ratio is simply the prior conditional odds of {dj 6= 0} and can be derived from the prior

distribution on the rank K. The second term in (2) can be viewed as a Bayes factor, evaluating the

evidence in the data for additional structure in E[Y] beyond that provided by Θ−j . Recall from

the previous section that Y−UDV′ = E−j − djU[,j]V
′
[,j], and so we can write

p(Y|U,D,V, φ, µ, ψ) =

[(
φ

2π

)mn/2
exp{−1

2
φ||E−j ||2}

]
exp{−1

2
φd2

j} exp{φdjU′
[,j]E−jV[,j]}

= p(Y|Θ−j , dj = 0, φ, µ, ψ)× exp{−1
2
φd2

j} × exp{φdjU′
[,j]E−jV[,j]} (3)

The first term in (3) is equal to the denominator of the Bayes factor, and is simply a product

of normal densities with the elements of Y having means given by U[,−j]D[−j,−j]V
′
[,−j] and equal

variances 1/φ. The numerator of the Bayes factor can be obtained by integrating (3) over Θj with

respect to its conditional distribution given µ, ψ,Θ−j and {dj 6= 0}. Integrating first with respect

to U[,j],V[,j], we need to calculate E[exp{φdjU′
[,j]E−jV[,j]}|Θ−j , dj ]. Let m̃ = m−

∑
k 6=j{dk 6= 0}

and ñ = n −
∑

k 6=j{dk 6= 0}. Recall that conditional on Θ−j , U[,j]
d= Nu

{−j}u and V[,j]
d= Nv

{−j}v

where u and v are uniformly distributed on the m̃- and ñ-spheres. Letting Ẽ = Nu′
{−j}E−jNv

{−j},

the required expectation can therefore be rewritten as Euv[exp{φdju′Ẽv}]. This expectation is

non-standard, and is derived in the appendix. The result gives:

p(Y|Θ−j , φ, µ, ψ, dj) = p(Y|Θ−j , φ, µ, ψ, dj = 0)× exp{−1
2
φd2

j}
∞∑
l=0

||Ẽ||2lφ2ld2l
j al (4)

where the sequence {al}∞0 can be computed exactly and is given in the appendix.
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The calculation of p(Y|Θ−j , φ, µ, ψ, dj 6= 0) is completed by integrating (4) over dj with respect

to p(dj |Θ−j , φ, µ, ψ, dj 6= 0), the normal density with mean µ and precision ψ. This integration

simply requires calculating the even moments of a normal distribution, resulting in

p(Y|Θ−j , φ, ψ, dj 6= 0) = p(Y|Θ−j , φ, ψ, dj = 0)×
∞∑
l=0

||Ẽ||2lalbl (5)

where the sequence {bl}∞0 is given by

bl = φ2l

(
ψ

φ+ ψ

)1/2

exp{−1
2
µ2ψφ/(φ+ ψ)}E[{ 1√

φ+ ψ
(Z +

µψ

φ+ ψ
)}2l]

where Z is standard normal. The required moments can be calculated iteratively, see for example

Smith (1995). The conditional odds of {dj 6= 0} is therefore

odds(dj 6= 0|Y,Θ−j , φ, λ) =
p(dj 6= 0|Θ−j)
p(dj = 0|Θ−j)

×
∞∑
l=0

||Ẽ||2lalbl.

In practice, only a finite number of terms can be used to compute the above sums. The sum in

(4) can be bounded above and below by modified Bessel functions, and the error in a finite-sum

approximation can be bounded, at least to the extent that one can compute the bounding Bessel

functions. This can also provide a guide as to how many terms to include in approximating (5).

Details are given in the Appendix.

If {dj 6= 0} is sampled it is still necessary to sample dj ,U[,j] and V[,j]. Multiplying equation

(4) by the prior for dj |{dj 6= 0}, the required conditional distribution for dj is proportional to

p(dj |Y,Θ−j , φ, µ, ψ, {dj 6= 0}) ∝ e−
1
2
(dj−µ)2ψe−

1
2
d2jφ

∞∑
l=0

||Ẽ||2lφ2ld2l
j al

which is an infinite mixture with the following components:

• mixture weights: wl ∝ ||Ẽ||2lalbl

• mixture densities: fl(d) ∝ d2l exp{−1
2(d− µ̃)2ψ̃}, where µ̃ = µψ/(φ+ ψ) and ψ̃ = φ+ ψ

The density fl(d) is nonstandard, but can be sampled from quite efficiently using rejection sam-

pling with a scaled and shifted t-distribution as the approximating density (the tails of a normal

distribution are not heavy enough).

To sample U[,j] and V[,j] we first sample u and v from their joint distribution and then set

U[,j] = Nu
{−j}u and V[,j] = Nv

{−j}v. Equation (3) indicates that the joint conditional density of

{u,v} is of the form

p(u,v|Y,Θ−j , φ, µ, ψ, dj) = c(A) exp{u′Av}, (6)

where A = φdjẼ and c(A)−1 = cm̃(0)−1cñ(0)−1
∑∞

l=0 ||A||2lal. This density defines a joint distri-

bution for two dependent unit vectors. To my knowledge, such a joint distribution has not been

studied before. Some useful facts about this distribution are
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• the conditional distribution of u|v is vMF(Av), and that of v|u is vMF(u′A);

• the marginal distribution of v is proportional to Im̃/2−1(||Av||)/||Av||m̃/2−1;

• the joint density has local maxima at {±(ûk, v̂k), k = 1, . . . , ñ} where (ûk, v̂k) are the kth

singular vectors of A.

I have implemented a number of rejection and importance samplers for this distribution, although

making these schemes efficient is still a work in progress. A relatively fast approximate method

that seems to work well for a variety of matrices A is to first sample (u,v) from the local modes

{±(ûk, v̂k), k = 1, . . . , ñ} according to the exact relative probabilities and then use this value as

a starting point for a small number of Gibbs samples, alternately sampling from p(u|A,v) and

p(v|A,u).

The complexity of the calculations involved in sampling from p(Θj |Y,Θ−j , φ, µ, ψ) suggest we

look for a simpler procedure. For example, we could model only dj to be zero with non-zero

probability, and sample from its full conditional distribution instead of marginally over U[,j] and

V[,j]. Unfortunately, an algorithm based on this approach will not mix well across ranks of M

because dj , U[,j] and V[,j] are dependent to an extreme: The probability of sampling dj 6= 0 is

essentially zero unless U[,j] and V[,j] are near a pair of local modes, but the probability of U[,j]

and V[,j] being in such a state is essentially zero if dj = 0. Metropolis-Hastings algorithms are

problematic for similar reasons and, based on my initial efforts on this problem, such algorithms

seem to require an extreme amount of tuning of the proposal distributions to achieve even minimal

acceptance rates. In contrast, sampling dj marginal over U[,j] and V[,j] is possible as shown above,

requires no tuning and, for the examples in this article, mixes well across matrices M of different

ranks.

4.3 A suggested Gibbs sampling scheme

The dimension-changing Monte Carlo sampler outlined above is computationally expensive com-

pared to the fixed-dimension sampler of Section 3. For this reason, it may be desirable to incorporate

the fixed-dimension sampler even when we are interested in sampling across dimensions, as this

might improve within-dimension mixing at a low computational cost. One such algorithm proceeds

by iterating the following steps:

A. Variable dimension sampler: For each j ∈ {1, . . . , n}, sample Θj = {U[,j], dj ,V[,j]} via

• sampling dj |Y,Θ−j , φ, µ, ψ ;

• sampling (U[,j],V[,j])|Y,Θ−j , φ, µ, ψ, dj .

B. Fixed dimension sampler: For each {j : dj 6= 0},
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• sample U[,j]|Y,Θ−j , φ, µ, ψ, dj ,V[,j];

• sample V[,j]|Y,Θ−j , φ, µ, ψ, dj ,U[,j] ;

• sample dj |Y,Θ−j , φ, µ, ψ,U[,j],V[,j].

C. Other terms:

• sample φ|Y,Θ ;

• sample µ|D, ψ;

• sample ψ|D, µ.

Alternatively, steps A and B could be performed on random subsets of indices j. The distributions

required for the steps in A are outlined in this section, and steps B and C are outlined in the

previous section. By conditioning on whether or not dj = 0 for each j, the steps in B can be

viewed as Gibbs sampling for all j ∈ {1, . . . , n}, not just those for which dj 6= 0. R-code that

implements this routine is available at my website.

5 Simulation study

In this section we examine the sampling properties of the estimation procedure with a small simu-

lation study. Each dataset in this study was simulated from the following model:

• U ∼ uniform(V5,m), V ∼ uniform(V5,n) ;

• D = diag{d1, . . . , d5}, {d1, . . . , d5} ∼ i.i.d. uniform(1
2µmn,

3
2µmn).

• Y = UDV′ + E, where E is an m× n matrix of standard normal noise.

For each value ofm and n, the sampling mean of {d1, . . . , d5} was taken to be µmn =
√
n+m+ 2

√
nm.

Such a value should distribute the singular values {d1, . . . , d5} near the “cusp” of detectability: As

shown in Edelman (1988), the largest singular value of an m×n matrix E of standard normal noise

is approximately µmn for large m and n.

Three-hundred datasets were generated using the model above, one-hundred for each of the three

sample sizes (m,n) ∈ {(10, 10), (100, 10), (100, 100)}. These were generated in the R statistical

computing environment using the integers 1 through 100 as random seeds for each of the three

sample sizes. Code to generate these datasets is available from my website. Prior distributions

for the parameters {φ, µ, ψ} were taken as described above with “prior sample sizes” of ν0 = 2

and η0 = 2. This gives exponential prior distributions for φ and ψ. The values of σ2
0, µ0 and τ2

0

were derived from “empirical Bayes”-type estimates obtained by averaging over different ranks as

follows:

11



1. For each k ∈ {0, . . . , n},

(a) Let ÛD̂V̂
′
be the least-squares projection of Y onto the set of rank-k matrices;

(b) Let σ̂2
k = ||Y− ÛD̂V̂

′||2/(nm)

(c) Let µ̂k =
∑k

j=1 d̂j/k, τ̂
2
k =

∑k
j−1(d̂j −

¯̂
d)2/k.

2. Let σ2
0 = 1

n+1

∑n
j=0 σ̂

2
j , µ0 = 1

n+1

∑n
j=0 µ̂j , v

2
0 = 1

n

∑n
j=0(µ̂j − ¯̂µ)2, τ2

0 = 1
n+1

∑n
j=0 τ̂

2
j .

The resulting prior distributions are weakly centered around averages of empirical estimates, where

the averaging is over ranks 0 through n. Finally, the prior distribution on the rank K of the mean

matrix was taken to be uniform on {0, . . . , n}. Other simple priors that gave similar results for

this simulation study include diffuse mean-zero normal distributions for the dj ’s (used in the next

section), and one in which the conditional mean of the dj ’s given φ is φ−1/2
√
m+ n+ 2

√
mn. This

latter prior distribution essentially focuses the search for non-zero dj ’s to values that are as large

as the largest singular values of normally distributed noise matrices, and will generally result in a

posterior distribution that puts more mass on lower values of K than would a prior distribution

for the dj ’s centered around zero. A more complicated alternative to these approaches would be

to have the prior distributions for {φ, µ, ψ} depend on K. For example, given K = k, the prior

distributions for {φ, µ, ψ} could be based on {σ̂2
k, µ̂k, τ̂

2
k}. Such prior distributions would require

some minor modifications to the variable-dimension sampler outlined in the previous section.

For each of the 100 × 3 datasets, 10, 000 iterations of the Gibbs sampling scheme described in

Section 4.3 were run to obtain approximate samples from the posterior distribution of UDV′. All

Markov chains were begun with K = 0 and {φ, µ, ψ} set equal to their prior modes. Summaries of

the posterior distributions for the three different values of (m,n) are displayed in Figure 2. The

first column of each panel plots the MCMC approximation to the expected value of p(K|Y) for

each value of (m,n). The expectation EY [p(K|Y)] is approximated by 1
100

∑100
s=1 p(K|Y(s)), where

Y(s) is the sth simulated dataset for a given value of (m,n) (for the case m = n = 100, p(K|Y) is

plotted only for K ≤ 10, although the distribution extends beyond this value). These distributions

are all peaked around the correct value K = 5 Also of interest is how frequently the posterior mode

K̂ = arg max p(K|Y) obtains the true value of K = 5. This information is displayed in the second

column of Figure 2, which gives the empirical distribution of K̂ taken over each of the 100 datasets.

As we see, the true value K = 5 is the most frequent value of the estimate in each dataset, with

K = 4 a close second. This is not too surprising, as half of the simulated singular values are below

the rough detection threshold of
√
n+m+ 2

√
nm.

Lastly we consider the effect of shrinkage on the estimate of the mean matrix M. For each simulated

dataset the posterior mean M̂ = E[M|Y] was obtained by averaging its value over the 104 scans
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Figure 2: Results of the simulation study. Plots in the first column give the averages of p(K|Y)

over 100 simulated datasets. The second column gives the empirical distribution of the posterior

mode K̂. The third column gives the distribution of the ratio of the squared error of the Bayes

estimate of M to that of the least-squares estimate.
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of the Gibbs sampler. The squared error in estimation, averaged over elements of the mean matrix

was calculated as ASEB = ||M̂ − M||2/(mn) where M is the mean matrix that generated the

data. This value is compared to ASELS , which is the corresponding average squared error of the

least-squares projection of Y onto the space of rank-K̂ matrices. The distribution of this ratio is

mostly below 1 for the case m = n = 10, and strictly below 1 for the other two cases where there are

more parameters to estimate. This corresponds with our intuition: The model-averaged estimates

improve relative to the least-squares estimates as the number of parameters increases. These results

indicate that simply obtaining a posterior estimate K̂ of K and then using the corresponding rank-

K̂ least-squares estimate of M generally results in an estimate that can be substantially improved

upon by model averaging, at least in terms of this error criterion.

6 Extension and example: analysis of binary relational data

A potentially useful extension of the model described above is to a class of generalized bilinear

models of the form

θi,j = β′xi,j + u′iDvj + ei,j

E[yi,j |Θ] = g−1(θi,j)

where g is the link function. Such models allow for the analysis of a variety of data types:

For example, binary data can be modeled as yi,j ∼ binary( exp{θi,j}
1+exp{θi,j}) and count data as yi,j ∼

Poisson(exp{θi,j}). Gabriel (1998) considered maximum likelihood estimation for a variant of this

model in situations where the dimension of D is fixed, and Hoff (2005) considered a symmetric

version of this model for the analysis of social network data. Parameter estimation and dimension

selection for the above model can be made by sampling from a Markov chain generated by a mod-

ified version of the algorithm of Section 4.3. Given current values of Θ,β,U,D,V, sample new

values as follows:

1. Let Ỹ = Θ −Xβ = UDV′ + E. Update U, D, and V from their conditional distribution

given Ỹ as described in Section 4.3.

2. Let Ỹ = Θ − UDV′ = Xβ + E. Update β from its conditional distribution given Ỹ (a

multivariate normal distribution).

3. Sample Θ∗ = Xβ + UDV′ + E∗, where E∗ is a matrix of normally distributed noise with

zero mean and precision φ. Replace θi,j by θ∗i,j with probability
p(yi,j |θ∗i,j)
p(yi,j |θi,j)

∧ 1.

We illustrate the use of such a model and estimation procedure with an analysis of binary

relational data between 46 global service firms and 55 cities, obtained from the Globalization and
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World Cities study group (http://www.lboro.ac.uk/gawc). For these data, yi,j = 1 if firm j

has an office in city i and yi,j = 0 otherwise. Standard practice is to represent within-row and

within-column homogeneity with effects that are additive on the log-odds scale:

log odds(yi,j = 1) = β + ai + bj , (7)

and so the effects a = {a1, . . . , am} and b = {b1, . . . , bn} constitute a rank-two structure. We look

for evidence of higher-order structure by considering the model

log odds(yi,j = 1) = β + γi,j (8)

γi,j = ui′Dvj + ei,j

The rank-two structure of model (7) is easily incorporated into (8) by fixing U[,1] = 1√
m

1m×1 and

V[,2] = 1√
n
1n×1 and modeling d1 and d2 to be non-zero with probability 1. The additive city and

firm effects are then given by a = d2U[,2] and b = d1V[,1] respectively. Note that any remaining

effects represented by UDV′ will be orthogonal to these additive effects, and that the mean of

the matrix UDV′ is identically zero, making it unaliased with the intercept β. For the remainder

of this analysis, the variable K will refer to the number of additional non-zero singular values of

UDV′ beyond the additive row and column effects.

We fix the error variance 1/φ = 1, as this scaling parameter is confounded with the magnitude

of β and UDV′. For simplicity we use independent normal (0, 100) prior distributions for β and

the non-zero elements of D, and a uniform prior distribution for K. A Markov chain of length

25,000 was constructed using the algorithm described above, starting with K = 0. Mixing across

ranks K was quite rapid as is shown in the first panel of Figure 3, which displays values of K every

100th scan of the Markov chain. The Monte Carlo estimate of p(K|Y), shown in the second panel,

gives a posterior mode of K = 6 and suggests strong evidence for structure in the log-odds beyond

that of the additive row and column effects.

One of the practical motivations for selecting an appropriate model dimension is prediction.

Many binary social network datasets include missing values, in which it is not known whether

yi,j = 1 or yi,j = 0. In such cases it is often desirable to make predictions about missing values

based on the observed data, and thus to base model selection on predictive performance. With this

in mind, we compare the above results to the following 10-fold cross validation procedure:

1. Randomly split the set of pairs {i, j} into ten test sets A1, . . . , A10.

2. For K = 0, 1, . . . ,Kmax :

(a) For l = 1, . . . , 10 :

i. With the rank fixed at K, perform the MCMC algorithm using only {yi,j : {i, j} 6∈
Al}, but sample values of θi,j for all ordered pairs.
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Figure 3: Posterior estimation of K. The first panel plots values of K every 100th scan of the

Markov chain. The second panel plots the Monte Carlo estimate of p(K|Y). The third panel gives

the results of a cross-validation evaluation of K ∈ {0, . . . , 10}.

ii. Based on the Monte Carlo sample values {θ(1)
i,j , . . . , θ

(S)
i,j } compute the posterior mean

µ̂i,j = 1
S

∑S
s=1

exp{θ(s)i,j }

1+exp{θ(s)i,j }
for {i, j} ∈ Al and the log predictive probability lpp(Al) =∑

{i,j}∈Al
log p(yi,j |µ̂i,j).

(b) Measure the predictive performance for K as LPP(K) =
∑Kmax

l=1 lpp(Al).

The values of −2LPP(K) for K ∈ {0, . . . , 10} are shown in the third panel of Figure (3). For

the particular random partitioning of the data used here, the cross-validation procedure suggests

a model rank of K = 6, which is the same value as the posterior mode of the Bayes solution.

However, a comparison of N values of K using a ten-fold cross validation procedure requires the

construction of 10 ×N separate Markov chains, and further requires specification of the values of

K to be compared. In contrast, the Bayesian procedure requires only one MCMC run and can

potentially visit each value of K ∈ {1, . . . , n}.
Finally we examine some of the patterns in the structure of UDV′ beyond those of the additive

effects. The posterior mean of UDV, minus the additive effects, was obtained by averaging over

scans of the Markov chain. The first two singular values and vectors of this matrix were obtained,

and the values of the resulting row (city) effects are plotted in Figure 4. These values are strongly

related to geography: U.S. cities cluster together, as do cities in Europe, Latin America and from

the Pacific rim.
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7 Discussion

This paper has presented a model-based data reduction and representation method for multivariate

and matrix-valued data. The approach is to model the data matrix Y as equal to a reduced-rank

mean matrix M plus Gaussian noise, and to simultaneously estimate M along with its rank. The

approach is Bayesian and the estimation procedure, based on Markov chain Monte Carlo, allows

for a wide variety of model extensions, such as to generalized bilinear models as described in the

previous section. Other straightforward extensions include estimation using replicate data matrices

and estimation subject to missing data. This latter extension may be of particular use in the

analysis of relational data among a large number of nodes, where it may be too costly to make

observations on all possible pairs. In such cases, the value of yi,j may be missing for many pairs,

but one can make predictions based on estimates ui,D,vj obtained from the observed data. Using

this approach to predict missing links in social networks and protein-protein interaction networks

is one of my current research areas. However, for large datasets with 1000 nodes (106 observations)

or more, the MCMC scheme in this article becomes prohibitively computationally expensive. I am

currently studying methods of making approximate Bayesian inference for large relational datasets.

These include Laplace approximations for various components of the MCMC scheme of Sections 3

and 4, and using variational methods for approximating joint posterior distributions (Jordan et al.,

1999).

Computer code and data for all numerical results in this paper are available at

www.stat.washington.edu/hoff.

A Proof of proposition 1

We first construct a sample from the uniform distribution on VK,m and then show that it has

the desired conditional distributions. Let z1, . . . , zK be i.i.d. multivariate normal (0, Im×m). Let

x1 = z1 and for j = 1, . . . ,K − 1 let

• Xj = (x1 · · ·xj);

• Pj = I−Xj(X′
jXj)−1X′

j ;

• xj+1 = Pjzj+1.

Note that Pj is the symmetric, idempotent projection matrix of RK onto the null space of Xj , and

so the vectors x1, . . . ,xj+1 are orthogonal. For each j, let Uj = Xj(X′
jXj)−1/2. For j = K, we
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have

X′
KXK =


x′1
x′2
...

xK

 (x1 x2 · · · xK) =


|x1|2 0 · · · 0

0 |x2|2 · · · 0

0 0 · · · |xK |2


and so

UK = (
x1

|x1|
,

x2

|x2|
, · · · , xK

|xK |
)

is a matrix of K orthonormal vectors in Rm. The proof will be complete if we can show the

following:

Lemma 1: The distribution of UK is the uniform distribution on VK,m.

Lemma 2: U[,k+1]|Uk
d= Nkuk+1 where Nk is an orthonormal basis for the null space of Uk and

uk+1 is distributed uniformly on the m− k dimensional sphere.

Proof of Lemma 1. By Theorem 2.2.1 (iii) of Chikuse (2003), an m × K matrix of the form

XK(X′
KXK)−1/2 is uniformly distributed on VK,m if XK is an m×K random matrix with rank K

a.s. and having a distribution that is invariant under left-orthogonal transformations. We will show

left invariance for each Xk constructed above by induction. Let H : Rm → Rm be an orthogonal

transformation, and note that HX1 = Hx1
d= x1 = X1. Now suppose HXk

d= Xk. The distribution

of HXk+1 is determined by its characteristic function:

E[exp{i
k+1∑
j=1

t′jHxj}] = E[exp{i
k∑
j=1

t′jHxj}E[exp{it′k+1Hxk+1}|Xk]]

Note that t′k+1Hxk+1 = (P′
kH

′tk+1)′zk+1, where zk+1 is a vector of independent standard normals

and independent of Xk. Thus the characteristic function can be rewritten as

E[exp{i
k∑
j=1

t′jHxj} exp{−1
2
t′k+1HPkP′

kH
′tk+1}] = E[exp{i

k∑
j=1

t′jx̃j} exp{−1
2
t′k+1P̃ktk+1}] (9)

where x̃j = Hxj and

P̃k = HPkP′
kH

′ = HPkH′

= H(I−Xk(X′
kXk)−1X′

k)H
′

= I−HXk((HXk)′(HXk))−1(HXk)′

A similar calculation shows that the distribution of Xj is characterized by

E[exp{i
k+1∑
j=1

t′jxj}] = E[exp{i
k∑
j=1

t′jxj} exp{−1
2
t′k+1Pktk+1}], (10)

19



By assumption, Xk
d= HXk, and so {x1, . . . ,xk,Pk}

d= {x̃1, . . . , x̃k, P̃k} and the expectations (9)

and (10) are equal. Since the characteristic functions specify the distributions, HXk+1
d= Xk+1

and the lemma is proved.

Proof of Lemma 2: The vector U[,k+1] is constructed as U[,k+1] = Pkzk+1/|Pkzk+1|. Pk has

m − k eigenvalues of one, the rest being zero, giving the eigenvalue decomposition Pk = NkN′
k

where Nk is a m× (m− k) matrix whose columns form an orthonormal basis for the null space of

Uk. Substituting in NkN′
k for Pk gives

U[,k+1] =
NkN′

kzk+1

|NkN′
kzk+1|

= Nk
N′
kzk+1

(z′NkN′
kNkN′

kz)1/2

= Nk
N′
kzk+1

(z′NkN′
kz)1/2

= Nk
N′
kz

|N′
kz|

Note that for each k, Uk = Xk(X′
kXk)−1/2, and so the projection matrix Pk can be written as

I−UkU′
k, a function of Uk. Therefore, given Uk, U[,k+1] is equal in distribution to Nk (a function

of Uk) multiplied by N′
kz/|N′

kz|. The distribution of N′
kz can be found via its characteristic

function: For an m− k-vector t

E[exp{it′(N′
kz)}] = E[exp{i(Nkt)′z}]

= exp{−1
2
t′N′

kNkt}

= exp{−1
2
t′t},

and so we see that Nkzk+1 is equal in distribution to an m − k-vector of independent standard

normal random variables, and so Nkzk+1/|Nkzk+1| is uniformly distributed on on the m−k-sphere.

B Expectation of eu
′Av

In this section we compute E[eu
′Av] for uniformly distributed unit vectors u and v and an arbitrary

m×n matrix A. Integrating with respect to v can be accomplished by noting that as a function of

v, eu
′Av is proportional to the von Mises-Fisher distribution on the n-sphere Sn, with parameter

u′A:
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∫
eu

′Avp(v) dSn(v) =
∫
eu

′Avcn(0) dSn(v)

=
cn(0)

cn(||u′A||)

∫
eu

′Avcn(||u′A||) dSn(v)

=
cn(0)

cn(||u′A||)
= Γ(n/2)(2/||u′A||)n/2−1In/2−1(||u′A||)

where Iν is the modified Bessel function of the first kind. The series expansion of In/2−1(||u′A||)
gives

Γ(n/2)(2/||u′A||)n/2−1In/2−1(||u′A||) =
∞∑
l=0

||u′A||2l Γ(n/2)
Γ(l + 1)Γ(l + n/2)4l

.

All the terms in the sum are positive, so E[eu
′Av] can be found by replacing ||u′A||2l with its

expectation in the above equation. To compute this expectation, let A = LΛ1/2R′ be the singular

value decomposition of A, where L′L = R′R = I and Λ is a diagonal matrix of the eigenvalues of

A′A. Then

||u′A||2 = u′AA′u

= u′LΛ1/2R′RΛ1/2L′u

= u′LΛL′u

≡ ũ′Λũ

=
n∑
j=1

ũ2
jλj ,

where ũ = L′u. We will now identify the distribution of the vector {ũ2
1, . . . , ũ

2
n}. Let B = {L,L⊥}

be an orthonormal basis for Rm. Since the uniform distribution on the sphere is rotationally

invariant, B′u is equal in distribution to u, and so L′u is equal in distribution to the first n

coordinates of u. Recall that a uniformly distributed vector u can be generated by sampling

z1, . . . , zm independently from a standard normal distribution and then dividing each term by

|
∑
z2
i |1/2. Therefore,

{ũ2
1, . . . , ũ

2
n}

d=
{z2

1 , . . . , z
2
n}∑m

j=1 z
2
j

=

(∑n
j=1 z

2
j∑m

j=1 z
2
j

)(
{z2

1 , . . . , z
2
n}∑n

j=1 z
2
j

)
d= θq
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where θ ∼ beta(n/2, (m−n)/2), q ∼ Dirichletn(1/2, . . . , 1/2) and θ and q are independent. There-

fore, ||u′A||2 d= θλ′q, where λ is the diagonal of Λ and are the eigenvalues of A′A. The required

expectation is then

E[||u′A||2l] = E[θl]E[(λ′q)l]

The first expectation is given by E[θl] = [Γ(n/2 + l)Γ(m/2)]/[Γ(m/2 + l)Γ(n/2)]. The second

expectation is the lth-moment of a Dirichlet average, which results in a type of multiple hypergeo-

metric function denoted as Rl(λ, 1
21). This expectation and its generalizations have been studied

by Carlson (1977, Chapter 5), Dickey (1983) and others. An algorithm for recursively computing

R1, . . . , Rl exactly from a generating function is provided in the next section.

To make the result of the calculation a little more intuitive let λ̃ = λ/
∑
λj ≡ λ/||A||2, and

make use of the fact that E[(λ′q)l] = ||A||2lE[(λ̃
′
q)l], Combining the results gives

E[eu
′Av] =

∞∑
l=0

||A||2lE[(λ̃
′
q)l]

Γ(m/2)
Γ(m/2 + l)Γ(1 + l)4l

≡
∞∑
l=0

||A||2lal,

and so we see how the expectation is related to the norm of A via ||A||2l and the variability in

relative sizes of the squared singular values via E[(λ̃
′
q)l].

To get bounds on a finite-sum approximation to E[eu
′Av], note that λlmin < E[(λ′q)l] < λlmax

so
∞∑

l=r+1

λlmin

Γ(m/2)
Γ(m/2 + l)Γ(1 + l)4l

<

∞∑
l=r+1

E[(λ′q)l]
Γ(m/2)

Γ(m/2 + l)Γ(1 + l)4l
<

∞∑
l=r+1

λlmax

Γ(m/2)
Γ(m/2 + l)Γ(1 + l)4l

The outer sums can be computed as

∞∑
l=r+1

λl
Γ(m/2)

Γ(m/2 + l)Γ(1 + l)4l
=
(

2√
λ

)m/2−1

Im/2−1(
√
λ)Γ(m/2)−

r∑
l=1

λl
Γ(m/2)

Γ(m/2 + l)Γ(1 + l)4l,

and so bounds on E[eu
′Av] −

∑r
l=0 ||A||2lal can be obtained, at least to the same precision with

which one can compute the modified Bessel function Im/2−1(
√
λ).

C Computing E[(λ′q)l]

Let q ∼ Dirichletn(α1, . . . , αn). Carlson (1977, Section 6.6) shows that

n∏
i=1

(1− tλi)−αi =
∞∑
l=0

Γ(α′1 + l)
Γ(α′1)Γ(l + 1)

tlE[(λ′q)l].

Let cl = Γ(α′1+l)

Γ(α′1)Γ(l+1)
E[(λ′q)l]. We now show how to calculate ck+1 based on c1, . . . , ck. Let

f(t) =
∑∞

l=0 clt
l be the right-hand side of the equation and g(t) = −

∑n
i=1 αi log(1− tλi) be the log
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of the left-hand side. Taking derivatives with respect to t and evaluating at zero we have

f (l)(0) = Γ(l + 1)cl, g(l)(0) = Γ(l)
n∑
i=1

αiλ
l
i.

Since f(t) = eg(t), we have

f (k+1)(0) =
k∑
l=0

(
k

l

)
f (l)(0)g(k+1−l)(0).

Plugging the values of f (l)(0) into the sum gives

ck+1 =
k∑
l=0

[
cl

(
k

l

)
Γ(l + 1)Γ(k + 1− l)

Γ(k + 2)

(
n∑
i=1

αiλ
k+1−l
i

)]
.

Simplifying gives

E[(λ′q)k+1] =
k∑
l=0

[
E[(λ′q)l]

Γ(1′α + l)Γ(k + 1)
Γ(1′α + k + 1)

(
n∑
i=1

αiλ
k+1−l
i

)]
.

C-code with an R-interface to calculate {E[(λ′q)l : l = 0, . . . , k} is available at my website.
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